Modelo:

NCMRWF(National Centre for Medium Range Weather Forecasting from India)

Actualização:
1 times per day, from 00:00 UTC
Greenwich Mean Time:
12:00 UTC = 12:00 WET
Resolution:
0.125° x 0.125° (India, South Asia)
parâmetro:
Geopotential in 850 hPa (solid, black lines) and Temperature advection in K/6h (colored lines)
Descrição:
The map "T-Adv 850" shows the advection of cold or warm air at 850 hPa level. Negative values indicate cold advection, while positive values indicate warm air advection. Advection of warm or cold air causes the geopotential height to respectively rise or drop, producing vertical rising and sinking motion of air. There is, however, not a direct relationship between temperature advection and resultant vertical motion in the atmosphere since other lifting and sinking mechanisms can complicate the picture, e.g. vorticity advection (see "V-Adv maps").
In weather forecasting, temperature advection maps are often used to locate the postion of wam and cold fronts. Cold advection is common behind cold fronts, while warm advection is common behind warm fronts and ahead of cold fronts. Higher in the atmosphere temperature advection is getting less pronounced, as horizontal much more uniform in temperature and the flow is more zonal.
NCMRWF:
NCMRWF
This modeling system is an up-graded version of NCEP GFS (as per 28 July 2010). A general description of the modeling system can be found in the following link:
http://www.ncmrwf.gov.in/t254-model/t254_des.pdf
An brief overview of GFS is given below.
------------------------------------------------------
Dynamics: Spectral, Hybrid sigma-p, Reduced Gaussian grids
Time integration: Leapfrog/Semi-implicit
Time filter: Asselin
Horizontal diffusion: 8th
order wavenumber dependent
Orography: Mean orography
Surface fluxes: Monin-obhukov Similarity
Turbulent fluxes: Non-local closure
SW Radiation; RRTM
LW Radiation: RRTM
Deep Convection: SAS
Shallow convection: Mass-flux based
Grid-scale condensation: Zhao Microphysics
Land Surface Processes: NOAH LSM
Cloud generation: Xu and Randal
Rainfall evaporation: Kessler
Air-sea interaction: Roughness length by Charnock
Gravity Wave Drag and mountain blocking: Based on Alpert
Sea-Ice model: Based on Winton
-----------------------------------------------
NWP:
A previsão numérica do tempo usa o estado instantâneo da atmosfera como dados de entrada para modelos matemáticos da atmosfera, com vista à previsão do estado do tempo.
Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na década de 1920, foi apenas com o advento da era dos computadores que foi possível realizá-lo em tempo real. A manipulação de grandes conjuntos de dados e a realização de cálculos complexos para o conseguir com uma resolução suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previsão, quer à escala global quer à escala regional, são executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previsão e estender a previsão do tempo bastante mais no futuro, o que não seria possível conseguir de outro modo.

Contribuidores da Wikipédia, "Previsão numérica do tempo," Wikipédia, a enciclopédia livre, http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675 (accessed fevereiro 9, 2010).