Model:

WAVEWATCH III Environmental Modeling Center

Zaktualizowano:
2 times per day, from 10:00 and 23:00 UTC
Czas uniwersalny:
12:00 UTC = 13:00 CET
Rozdzielczość:
0.0833° x 0.0833°
parametr:
Sea surface temperature
Opis:
Ensemble forecasting:
is a numerical prediction method that is used to attempt to generate a representative sample of the possible future states of a dynamical system. Ensemble forecasting is a form of Monte Carlo analysis: multiple numerical predictions are conducted using slightly different initial conditions that are all plausible given the past and current set of observations, or measurements. Sometimes the ensemble of forecasts may use different forecast models for different members, or different formulations of a forecast model. The multiple simulations are conducted to account for the two sources of uncertainty in weather forecast models: (1) the errors introduced by chaos or sensitive dependence on the initial conditions; and (2) errors introduced because of imperfections in the model, such as the finite grid spacings.
Considering the problem of numerical weather prediction, ensemble predictions are now commonly made at most of the major operational weather prediction facilities worldwide, including the National Centers for Environmental Prediction (US), the European Centre for Medium-Range Weather Forecasts (ECMWF), the United Kingdom Met Office, Meteo France, Environment Canada, the Japanese Meteorological Agency, the Bureau of Meteorology (Australia), the China Meteorological Administration, the Korea Meteorological Administration, and CPTEC (Brazil). Experimental ensemble forecasts are made at a number of universities, such as the University of Washington, and ensemble forecasts in the US are also generated by the US Navy and Air Force.
Ideally, the relative frequency of events from the ensemble could be used directly to estimate the probability of a given weather event. For example, if 30 of 50 members indicated greater than 1 cm rainfall during the next 24 h, the probability of exceeding 1 cm could be estimated to be 60 percent. The forecast would be considered reliable if, considering all the situations in the past when a 60 percent probability was forecast, on 60 percent of those occasions did the rainfall actually exceed 1 cm. This is known as reliability or calibration. In practice, the probabilities generated from operational weather ensemble forecasts are not highly reliable, though with a set of past forecasts (reforecasts or hindcasts) and observations, the probability estimates from the ensemble can be adjusted to ensure greater reliability. Another desirable property of ensemble forecasts is sharpness. Provided that the ensemble is reliable, the more an ensemble forecast deviates from the climatological event frequency and issues 0 percent or 100 percent forecasts of an event, the more useful the forecast will be. However, sharp forecasts that are unaccompanied by high reliability will generally not be useful. Forecasts at long leads will inevitably not be particularly sharp, for the inevitable (albeit usually small) errors in the initial condition will grow with increasing forecast lead until the expected difference between two model states is as large as the difference between two random states from the forecast model's climatology.
There are various ways of viewing the data such as spaghetti plots, ensemble means or Postage Stamps where a number of different results from the models run can be compared.

Wikipedia, Ensemble forecasting, http://en.wikipedia.org/wiki/Ensemble_forecasting (optional description here) (as of Feb. 9, 2010, 20:30 UTC).
SST:
A daily, high-resolution, real-time, global, sea surface temperature (RTG_SST) analysis has been developed at the National Centers for Environmental Prediction/Marine Modeling and Analysis Branch (NCEP / MMAB). The analysis was implemented in the NCEP parallel production suite 16 August 2005. It became fully operational on September 27, 2005.
The daily sea surface temperature product is produced on a twelfth-degree (latitude, longitude) grid, with a two-dimensional variational interpolation analysis of the most recent 24-hours buoy and ship data, satellite-retrieved SST data, and SST's derived from satellite-observed sea-ice coverage. The algorithm employs the following data-handling and analysis techniques:
Satellite retrieved SST values are averaged within 1/12 o grid boxes with day and night 'superobs' created separately for each satellite;
Bias calculation and removal, for satellite retrieved SST, is the technique employed in the 7-day Reynolds-Smith climatological analysis;
Currently, the satellite SST retrievals are generated by a physically-based algorithm from the Joint Center for Satellite Data Assimilation. Retrievals are from NOAA-17 and NOAA-18 AVHRR data;
SST reports from individual ships and buoys are separately averaged within grid boxes;
The first-guess is the prior (un-smoothed) analysis with one-day's climate adjustment added;
Late-arriving data which did not make it into the previous SST analysis are accepted if they are less than 36 hours old;
Surface temperature is calculated for water where the ice cover exceeds 50%, using salinity climatology in Millero's formula for the freezing point of salt water:
t(S) = -0.0575 S + 0.0017 S3/2 - 0.0002 S2,
with S in psu.
An inhomogeneous correlation-scale-parameter l, for the correlation function: exp(-d2/l2) , is calculated from a climatological temperature gradient, as
l = min ( 450 , max( 2.25 / |grad T| , 100 )),
with d and l in kilometers. "grad T" is in oC / km
Evaluations of the analysis products have shown it to produce realistically tight gradients in the Gulf Stream regions of the Atlantic and the Kuroshio region of the Pacific, and to be in close agreement with SST reports from moored buoys in both oceans. Also, it has been shown to properly depict the wintertime colder shelf water -- a feature critical in getting an accurate model prediction for coastal winter storms.
NWP:
Numeryczna prognoza pogody - ocena stanu atmosfery w przyszłości na podstawie znajomości warunków początkowych oraz sił działających na powietrze. Numeryczna prognoza oparta jest na rozwiązaniu równań ruchu powietrza za pomocą ich dyskretyzacji i wykorzystaniu do obliczeń maszyn matematycznych.
Początkowy stan atmosfery wyznacza się na podstawie jednoczesnych pomiarów na całym globie ziemskim. Równania ruchu cząstek powietrza wprowadza się zakładając, że powietrze jest cieczą. Równań tych nie można rozwiązać w prosty sposób. Kluczowym uproszczeniem, wymagającym jednak zastosowania komputerów, jest założenie, że atmosferę można w przybliżeniu opisać jako wiele dyskretnych elementów na które oddziaływają rozmaite procesy fizyczne. Komputery wykorzystywane są do obliczeń zmian w czasie temperatury, ciśnienia, wilgotności, prędkości przepływu, i innych wielkości opisujących element powietrza. Zmiany tych własności fizycznych powodowane są przez rozmaitego rodzaju procesy, takie jak wymiana ciepła i masy, opad deszczu, ruch nad górami, tarcie powietrza, konwekcję, wpływ promieniowania słonecznego, oraz wpływ oddziaływania z innymi cząstkami powietrza. Komputerowe obliczenia dla wszystkich elementów atmosfery dają stan atmosfery w przyszłości czyli prognozę pogody.
W dyskretyzacji równań ruchu powietrza wykorzystuje się metody numeryczne równań różniczkowych cząstkowych - stąd nazwa numeryczna prognoza pogody.

Zobacz Wikipedia, Numeryczna prognoza pogody, http://pl.wikipedia.org/wiki/Numeryczna_prognoza_pogody (dostęp lut. 9, 2010, 20:49 UTC).